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The p rob lem of the nonsta t ionary heating of an a r b i t r a r y  body of finite dimensions in a bounded 
fluid volume is solved for  an a r b i t r a r y  volume heat source  and an a r b i t r a r y  i n i t i a l - t empe ra -  
ture distr ibution.  

In the c lass ica l  theory of heat  conduction [1] the t e m p e r a t u r e  of the ambient  medium Tf(T) is usual ly  
given as a function of t ime.  In a number  of cases ,  however,  it is n e c e s s a r y  to re la te  its var ia t ion  with 
changes in the t empe ra tu r e  of the heated body by means of the hea t -ba lance  equation. 

This approach was adopted in [2, 3], where  it was shown that the p rob lem of de termining the t e m p e r a -  
ture field of a solid par t ic le  in a para l le l  or  counter-f low [4-9] and the p rob lem of de termining  the kinetics 
of per iodic  para l le l  and counter- f low extract ion f r o m  porous  pa r t i c les  [10] a re  identical with the p rob lem 
of a body heated in a bounded volume of well mixed fluid. 

Below, this p rob lem is solved for  an a r b i t r a r y  body of finite dimensions .  The t empe ra tu r e  field of 
the body is descr ibed by the equation 

OT (M, x) aAT (M, x) %- w (M, "~._____~) , 
0"~ c 7 

where  y > 0; MtiV; NtiS; 
to S. 

At the initial instant y = 0, a body with t e m p e r a t u r e  

T (M, O) = [o (M) 

is placed in a bounded fluid volume Vf at the initial t empera tu re  

TI(0) = T o .  

In addition to the usual boundary condition of the third kind 

~, OT (N, x) + r (N){T s (~) - -  T (N, x)} -= 0, 
On 

f r o m  the hea t -ba lance  equation for  the fluid we obtain 

s OT (N, z) dTt ('0 = O, 
f f  On dS + ciyiV ~ d~ 

where the p a r a m e t e r s  of the fluid a re  denoted by the subsc r ip t  f. 

The solution of the p rob lem in etgenvalues 

a ~p (M) + ~t,r (M) = O, 

o , ( N )  (M) dv = 0 
r  On , ctvtv t d  

V 

is assumed to be known. 

(1) 

V is a certain region bounded by the elosed surfaee S; n is the outward normal 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Let ~i(M) and ~j(M) be two eigenfunctioas corresponding to different eigerlvalues Pi and #j 

Ar (M) = - - ~ , ,  (M)andA*j (M) = - -  ~i2 t~i (M), (8) 
m o r e o v e r ,  

~Pi (N) + - -  

r  + - -  

~, a,~(N) _ cv ~ ~pi(M)dV, (9) 
~z ( N) an c ~ V  l 

v 

)~ O~j(N) _ c~ j ' r  (10) 
(z (N) On cf~sV s 

Y 

Multiplying the f i rs t  of Eqs. (8) by Sj(M), subtracting the second equation multiplied by St(M), and in- 
tegrating the resul ts  obtained using the second Green's  theorem [11], we find 

"r (N) 

s r 

0,~ (N) [ 

1 
On 

d S =  
a,j  (N) 

On 

(~-  ~) j' r (M) % (M) dV. 
V 

(11) 

Treat ing boundary conditions (9) and (10) as a sys tem of equations in the "unknowns" 1 and k/oz(N) and 
using Cramer ' s  rule to determine the f i rs t  "unknown" with subsequent integration over the surface of the 

(~ --  ~t;) r (M)dV r (M) dV=0. (12) 

r (N) a r (N) v v 
an I 

body, we find 

$ 

From (11) and (12) there follows 

c ~  / dV = (i # i)- (13) S r r c,,,v,~ ,,(M)dV, 0 
V V 

An arbi t rary ,  twice-continuously differentiable function can be represented in the ser ies  form 

F(M) -= ~ C, t~, (M). (14) 
i = 1  

C i we multiply both sides of Eq. (14) by r + (cT/efTfVf)JSj(M)dV and then In order  to determine 
V 

integrate over the volume. Then, using (13), we easi ly find Ci, and ser ies  (14) takes the form 

Z csvlVs r (M) dV dV 
F (M) = v v . r (M). (15) 

j' { c---V--i r / dV ;=, r (M) *i (m)+ c~yiVl 
V V 

In what follows we require the ser ies  expansion of the function F(M) = 1. For  this case from (15) 
we obtain 

. ~ (M) S ~ (M) dV 

c__yV c T V " 
~Pi (M) ** (M)+ cj?/V1, ~ (M) dV dV 1 -} ct?lV1 

V V 

(16) 

tn order  to solve Eq. (1) with conditions (2)-(5) we use the Laplace integral t ransform 

(M, p) = j" T (M, ~) exp (-- p~) dr 
0 

and the finite integral t ransform 

(17) 
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T~ (p! = 7' (M, p) ,~ (M) -I- cpl~V~ ~ii (M) dV dV. 
V V 

Comparing (15) and (18), we see that the inversion formula takes the form 
e~ 

(M, p) :: Z r (M) ~c~ (p) ~=, S ~p, (M){~p, (M)q-cj~1~, .( **(M)dV}dV 
V V 

Applying a Laplace t ransformation to (1) and multiplying the results  obtained by ~bi(lVl) + eT/efTfVf 

S~L(M)dV, subtracting (6) multiplied by ~(lV[, p), and integrating over the volume using (18), we obtain 
i,V 

1 ~  c,~1Vl!fo(M)dV T,(P)-  p+ ~, P a ~ fo(M) 4, (M) dV + 1--- c ~, 

V 

~& (N) 0 ~Pl (N) cIS a ~ on a c ,  
• ~i(M)dg+ p+al*~ q - - - ' - -  

p cf~V~ 
,i ~r (~, p) Of~on(~V,p________~ 

(18) 

(19) 

• 4,(M) dV AT"(M,p)dV+ P+ag~ 0 c~ pc,~sV~ 
v {I v 

Applying a Laplace t ransformation to boundary conditions (4) and (5), we find 

X O~(N,p)_To ~ (~Of(N'P)dS. (21) 
(N, p) + ~ (N~ On p pclDV ~ . ,  On 

S 

As in deriving (12), f rom (9) and (21) we find 

I ,,(N) o,,(N) f I fr, On cy 
dS+ - -  ~(M) dV 

p + ag~ ~s OT(N,p) PcIDVt ' 
V 71" (N, p) On 

S (1 ' ) ;  x A~(M,p)dV=rc  P p + a ~  ~ ( M ) ~ .  (22) 
V V 

Substituting (22) in (20) and then the resul t  obtained m inversion formula (19), using (16) we obtain 
the tempera ture  t ransform 

~(M,R)=7 l+&U r o + ~  f0(M) ~,~ j j 
-- ciysVs 

(M), J' 

V V 

V V 

After tnverston we obtain the final solution of the problem 

r (M, ~) = 
1 -b c7 V @7#ldv ct~'#I o v 

cI7Y~ 
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+ ~ , , ~  ~, (M)exp (--a~ (('/j fo (M)r (M)dV 

V 

v svl s/ 
% 

Cy 
V 0 V 

For one-dimensional bodies we have 
R 

F(M)dV (F d-1)V F(r) r 

V 0 

(24) 

(25) 

where F = 0, 1, 2 for a plate, cylinder, and sphere, respectively. 

With the aid of this equation it is easy to obtain from (24) the solutions for a plate, a cylinder, and a 
sphere presented in [2-10]. Graphs showing the variation of the temperatures of one-dimensional bodies 
and the temperature of the surrounding medium are given in [2, 3, 7, 8]. 
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