HEATING OF A BODY IN A BOUNDED VOLUME OF
WELL MIXED FLUID

M. D. Mikhailov UDC 536.242

The problem of the nonstationary heating of an arbitrary body of finite dimensions in a bounded
fluid volume is solved for an arbitrary volume heat source and an arbitrary initial-tempera-
ture distribution.

In the classical theory of heat conduction [1] the temperature of the ambient medium Tg(71) is usually
given as a function of time. In a number of cases, however, it is necessary to relate its variation with
changes in the temperature of the heated body by means of the heat-balance equation,

This approach was adopted in [2, 3], where it was shown that the problem of determining the tempera-
ture field of a solid particle in a parallel or counter-flow [4-9] and the problem of determining the kinetics
of periodic paralle! and counter-flow extraction from porous particles [10] are identical with the problem
of a body heated in a bounded volume of well mixed fluid.

Below, this problem is solved for an arbitrary body of finite dimensions. The temperature field of
the body is described by the equation

w(M 1:)

(1)

T (M, v) — aAT (M, 1) + 200
ot

where T >0; MEV; N€S; Vis a certain region bounded by the closed surface S; n is the outward normal
to S.

At the initial instant 7 = 0, a body with temperature
T (M, 0) = fo (M) (2
is placed in a bounded fluid volume V; at the initial temperature
T,0) =T, | 3
In addition to the usual boundary condition of the third kind

aT(N WD) 4 o(WWT; () —T (N, D} = 0 ?

from the heat-balance equation for the fluid we obtain
}»é‘)aTgv T)dS-i— ey, 10 dT,('c) —0, )

where the parameters of the fluid are denoted by the subscript £,

The solution of the problem in eigenvalues

Ay (M) 4 pp (M) = (6)
A aw(N) 7
w(N)+a(N) Fra cfvaffxp(M)dv_o (7

is assumed to be known.
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Let $;3(M) and qu(M) be two eigenfunctions corresponding to different eigenvalues u; and u j

Ap; (M) = — 2, (M)and Ay, (M) = — p2 (M), (8)
moreover,
AP (N) S
(N =— (M) dv, (9)
P ( )+Q(N) n . P;
A 10 j M (10)
\p,-(N)Jra N on Cfvaf P (M)dv .

Multiplying the first of Eqs. (8) by I,D :(M), subtracting the second equation mulitplied by ¥{(M), and in-
tegrating the results obtained using the second Green's theorem [11], we find

W) 9“’7‘”—’
1

9% (V)
on

dS = (u2 — ) f 0, (M) 9y (M) V. (11)
S b v

Treating boundary conditions (9) and (10) as a system of equations in the ™unknowns" 1 and A/x(N) and
using Cramer's rule to determine the first "unknown" with subsequent integration over the surface of the
body, we find
dp; (V)

on

0 p; (V)
on |

¥ (V)
S + (3 —) <L f (M) &Y ﬁ; (M) dv =0. (12)
g o ) V5 fy Y

From (11) and (12) there follows

fw){w‘jww ”’-jw,-(M)dv}dv=o ) (13)
J Cf?fov

An arbitrary, twice-continuously differentiable function can be represented in the series form
F(M) =Y Ci (M). (14)
i==1
In order to determine C; we multiply both sides of Eq. (14) by wj(M) + (cy/cfyfvf)fwj (M)dV and then
integrate over the volume, Then, using (13), we easily find Ci, and series (14) takes the form

F (M) P

j fwl(M
F(M)= ; s ; (M) (15)
“d |

P, (M) w, (M) —< S (M) dv} v
foVf

In what follows we require the series expansion of the function F(M) = 1, For this case from (15)
we obtain

. b (M) 5 b (M) v

J 1
; Y b (M) {‘Pi (M)4
v

M)dV} T

GV e
crviVy

Vs
In order to solve Eq. (1) with conditions (2)-(5) we use the Laplace integral transform
T(M,p) = [ T(M, 1) exp (—pr)de an

0
and the finite integral transform
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CiVe¥ 5

T~ (T on oo + [wonala 18)
v 1%

Comparing (15) and (18), we see that the inversion formula takes the form
\ _ wMTi) _ 19
= [won{noot 25 ( o

CVVye

T (M, p) =

v

Applying a Laplace transformation to (1) and multiplying the results obtained by Y (M) + cylepyrVi

S‘ $;{(M)dV, subtracting (6) multiplied by T(M, p), and integrating over the volume using (18), we obtain
kY

R o0 ) 4 — fcf"fffo(Mw
4

99 (V)
on a cy

¥ (V)
ds

(MydY - — % f._cv
xjwl( )av + P an (sss ) + Py
V ronp 0D

xjwi(zmdv {Aﬂm,p)dw——l——f S0 D)y )+ — !

oM, pydV \ v (M)dv .
e pc,y,vff’”( ) Sw() (20)

14

Applying a Laplace transformation to boundary conditions (4) and (5), we find

AT, p) > ngaﬂzv,p)
N, ds. 21
TN, p)+—— W b ey, ) 5 (21)
As in deriving (12), from (9) and (21) we find
ap; (N
P; (V) %) |
_L—Cﬁ R P iy gy
p-Hani 7 pesviVy f l
v

S |T(N, p) aT(é\’/{P)

. 1
x [aTonpa - (= ——ta) f w (. (22)
v

Substituting (22) in (20) and then the result obtained in inversion formula (19), using (16) we obtain
the temperature transform

T 1 cy W(M P
TPy =~ 537 {Tc +cva ﬂf"( T ]dv}

1+
. eviVs
_I.. ‘Pz (M) .
= fwl(M){w,(MH S\pi(M)dV |av
Vs
1 w(M,p)] (M . S‘ A
X —tam {§[fU(M)+_———CY WO =T, | 4,0 | (23)

After inversion we obtain the final solution of the problem

1
M, )= — [T, + £ (M) dV+ ”w(m ) dVd
i 1+ﬂ{ Cfff 0 Vs }

ViV
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¥; (M) exp (— aulv)

= ‘ (M CYS‘
xéw( ){xb( )+cmv, Py

+

J‘fo (M) b; (M) dV

. ~ 24
—chwi (M)dHH BOLT ¢ o (—M?ar*)dVdr*}- .
v gy ¢V
For one-dimensional bodies we have
R r
FMav=T+)VIFn|L) 4 L, 25
Vj() (+>j<r)(R)R (25)
0

where I' = 0, 1, 2 for a plate, cylinder, and sphere, respectively.

With the aid of this equation it is easy to obtain from (24) the solutions for a plate, a cylinder, and a
sphere presented in [2-10]. Graphs showing the variation of the temperatures of one-dimensional bodies
and the temperature of the surrounding medium are given in [2, 3, 7, 8].
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